研究領域2

食糧と機能性成分生産のための植物の改良 Engineering of plants for production of provisions and nutraceuticals

裕和 Hirokazu KOBAYASHI

生活健康科学研究科食品栄養科学専攻 植物機能開発研究室 教授

Professor, Laboratory of Plant Molecular Improvement, Department of Food and Nutritional Sciences, Graduate School of Nutritional and Environmental Sciences

Profile

2006-静岡県立大学生活健康科学研究科長 2011年

2003年 静岡県立大学生活健康科学研究科教授 岡崎国立共同研究機構 基礎生物学研究所客員助教授(兼任) 1993年 静岡県立大学生活健康科学研究科助教授 1984年 名古屋大学アイントープ総合センター助手 ハーバード大学生物学教室日本学術振興会施外特別研究員 1983年 名古屋大学大学院農学研究科博士課程修了

1982年 1977年 鳥取大学農学部卒業 Dean, Graduate School of Nutritional and Environmental Sciences Dean, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka Professor, Graduate School of Nutritional and Environmental Sciences,

University of Shizuoka Associate Professor (Adjunct), National Institute for Basic Biology Associate Professor, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka Research Associate, Radioisotope Research Center, Nagoya Universit JSPS Postdoctoral Fellow for Research Abroad, Biological

Laboratories, Harvard University
Ph.D., Plant Biochemistry, Graduate School of Agriculture Nagoya University 1977 Graduate, Faculty of Agriculture, Tottori University

Contact

T E L 054-264-5582

+81-54-264-5582

hirokoba@u-shizuoka-ken.ac.ip URL http://sfns.u-shizuoka-ken.ac.

ip/pctech/

序論

18世紀後半以降、世界人口は5倍に増大し、その結果、食糧危 機や環境汚染が深刻化している。また、日本は世界の最長寿国であ り、老人人口はここ20年間で倍増した、これに伴い生活習慣病が大 きな社会的問題となってきた。このような状況において、「植物 | に注 目が払われるべきであろう。植物は、食物連鎖の頂点に位置する人 類にとって、直接的かつ間接的な主たる食糧源であり、生活習慣病 を予防する機能性成分あるいはバイオ燃料の生産、また環境保全 に欠くことのできない資源である。このような植物の重要性は、植物に 特徴的な細胞内小器官である「葉緑体」の光合成機能に依存す る。一方、塩析出土壌は、世界規模ではアメリカ合衆国の国土面積 に匹敵し、さらにその被害は拡大し続けている。植物の活用を目指 し、葉緑体の機能構築および塩適応の制御機能について研究し

■ 成果

遺伝子操作は植物を改良する上で最も強力な方法論である。し かしながら、社会に受け入れられる技術革新が望まれる。動物が同 化できない分岐鎖アミノ酸の生合成に必要なアセト乳酸合成酵素 (ALS)の遺伝子に注目し、これに変異を導入後、各種除草剤との 組み合わせにおいて、核形質転換の選択マーカーあるいは葉緑体 に代表されるプラスチドの形質転換における維持マーカー(Fig.1)とし て使用した。一方、光合成電子伝達における不均衡は、光化学系 (PS) IとIIのアポタンパク質遺伝子の発現比の光制御により是正さ れる。プラスチドRNAポリメラーゼの主たるσ因子(SIG1)は、電子伝 達系プラストキノン(PQ)のレドックスに応答し、この制御において重 要な役割を演じていた(Fig. 2)。塩応答に関し、光合成成長塩耐性 突然変異系統(pst)等を選抜した。DNAマイクロアレイ解析により、 pst2における転写因子bHLH19の高発現を見いだした。さらに、 bHLH19遺伝子を強制発現させることにより、シロイヌナズナへの塩 耐性付与に成功した(Fig. 3)。

展望

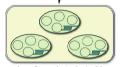
アメリカ合衆国農務省は、2011年7月に、パーティクルガンによりす べて植物由来の遺伝子を導入した芝を遺伝子組換えの規制外と する判断を下した。この判断は、同一の基準で進めてきた葉緑体機 能増強や塩耐性付与、さらに機能性成分強化を指向する本研究を 支持し、さらに社会貢献に結び付けるものである。

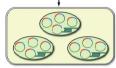
Introduction

The world's population has increased about 5-fold since the late 18th century, resulting in problems of food scarcity and environmental pollution. Meanwhile, the aged population in lapan having doubled in the past two decades, it is now the most aged country in the world, magnifying the problem of lifestyle-related illnesses. We need to assess plants that are major sources necessary for foods directly or indirectly through food chains, nutraceuticals that can protect against lifestyle-related illnesses, and biofuels. Plants derive these capacities from photosynthetic activity in chloroplasts in their intracellular compartments. On the other hand, salt accumulated on soil surfaces is a serious problem; globally salt-affected areas are presently collectively the size of the entire United States and expanding. We focused on the aspects of applications of regulation of biogenesis of chloroplasts and adaptation to environmental stresses such as

Results

Genetic engineering is the most powerful methodology for improving plants if it achieves acceptance by consumers. We mutagenized the gene for acetolactate synthase (ALS), a key enzyme in biosynthesis of branched chain amino acids that animals cannot assimilate, and used it in combination with herbicides as a selectable marker for nuclear transformation or a sustainable marker for transformation of plastids including chloroplasts (Fig. 1). Imbalances in photosynthetic electron transfer are corrected by light control of the rate of expression of genes encoding apoproteins of photosystem (PS) I and II. We found that the major sigma factor in plastid RNA polymerase, SIGI, plays a crucial role in regulation of expression of those genes in response to the redox state of plastoquinone (PQ), which is a connecting electron carrier (Fig. 2). We screened photoautotrophic salt tolerance (pst) mutants and others, and found greater expression of basic helix-loop-helix 19 (bHLH19) by DNA microarray analysis in the pst2 mutant. Over-expression of the alternatively-spliced mRNA species of bHLH19 results in transgenic Arabidopsis that is more tolerant to salt than the wild type (Fig. 3).

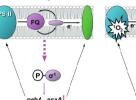

Perspectives

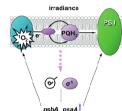

The US Department of Agriculture has recently announced that it does not regulate a kind of transgenic grass made with all plant-derived genes by particle bombardment. This provides encouragement for all our trials involving such elements, our trials being directed toward improving plants by enhancing chloroplast function and salt tolerance, as well as enrichment with nutraceuticals.

objective gene alone

objective gene + sustainable marker

when objective gene product interferes with any plastid functions



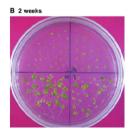

タパコ形質転換プラスチドの維持マーカーとしての植物由来変異型ALS(mALS)遺伝子

本法は、レタスにも適用され得る。

Role of sustainable markers in genetically engineered plastid (transplastomic) lines of

We employed plant-derived mutated ALS (mALS) genes. This strategy is applicable to vegetables such as lettuce.

SIG1(σ¹)のリン酸化を介した葉緑体遺伝子発現の光制御。


PQのレドックス状態は、光の強度と波長によって変わる。PSI反応中心アポタンパク質遺 伝子psaAは、PQH2により誘導され、酸化型PQにより抑制される。一方、PSII反応中心 D1タンパク質遺伝子psbAの発現は、PQレドックスへの依存性が低いため、強光下におい

[Figure 2]

Light control of chloroplast gene transcription via phosphorylation of SIGI (σ^{i}). The intensity and wavelength of light changes the redox status of PQ. Expression of psaA, encoding the apoprotein of the PS I reaction center, is induced by POH: and repressed when PO is oxidized. Expression of bsbA, encoding the DI protein of the PS II reaction center, is less affected by the redox status, thus no reactive oxygen species were generated under irradiant conditions.

A 1 week

bHLH19遺伝子導入シロイヌナズナの塩耐性。

"wild-type"、野生系統Col-0; "knockout"、bHLH19遺伝子破壞系統; "completely-spliced"および "incompletely-spliced"、bHLH19 cDNA高発現系統。これ らの系統は、75 mM NaCl含有Murashige-Skoog培地において、表記の期間培養された。

Salt-tolerance of Arabidopsis lines transgenic with bHLH19 gene.

We generated "wild-type", Col-0; "knockout", bHLH19 knocked-out; and "bHLH19 completely-spliced" and "bHLH19 incompletely-spliced", bHLH19 cDNA from alternatively spliced mRNA species. We grew these lines during the indicated periods after sowing on Murashige-Skoog solid medium containing 75 mM NaCl.

■ 代表的な発表論文と研究業績 / Major Publications and Achievements

- I. M. Shimizu, K. Kawai, K. Kaku, T. Shimizu, and H. Kobayashi: Application of mutated acetolactate synthase genes for herbicide resistance to plant improvement. In "Herbicides, Theory and Applications" (S. Soloneski, and M. L. Larramendy, eds.), InTech, pp. 193-212 (2011)
- 2. M. Shimizu, H. Kato, T. Ogawa, A. Kurachi, Y. Nakagawa, and H. Kobayashi: Sigma factor phosphorylation in the photosynthetic control of photosystem stoichiometry, Proc. Natl. Acad. Sci. USA, 107, 10760-10764 (2010)
- 3. A. Ahmad, I. Kaji, Y. Murakami, N. Funato, T. Ogawa, M. Shimizu, Y. Niwa, and H. Kobayashi: Transformation of Arabidopsis with plant-derived DNA sequences necessary for selecting transformants and driving an objective gene. Biosci. Biotechnol. Biochem., 73, 936-938 (2009)
- 4. M. Shimizu, M. Goto, M. Hanai, T. Shimizu, N. Izawa, H. Kanamoto, K.-I. Tomizawa, A. Yokota, and H. Kobayashi: Selectable tolerance to herbicides by mutated acetolactate synthase genes integrated into the chloroplast genome of tobacco. Plant Physiol, 147, 1976-1983 (2008)

20 21